Order 1
The largest left-truncatable prime is
24 digits: 357686312646216567629137.
Removing a digit at a time from the left end gives a sequence of 24 primes.
The prime has been found independently by several people.
There are 4260 left-truncatable primes.
Order 2
The 184-digit p184 is the largest known left-truncatable prime of order 2:
p184 = 3317\ 676039361863813375186047305269232254334434985415346321657293\ 347842184166316972712521507542402061477899339469603596634858\ 212099979878129094817736602146359724182316273512181213141511This means that removing 2 digits at a time from the left end gives a sequence of 92 primes: p184, ..., 1511, 11.
Order 3
The 1140-digit p1140 is the largest known left-truncatable prime of order 3:
p1140 = 686957720511887558525174658414510840176432151923825981304948\ 378237135960629558400414747213755738286767792781351488750517\ 264488672424143774793266286770364857174294438649140883405465\ 111650184405422520731603936126112798650690193956270492667782\ 252202425468175747633902739432648860601275832729600906840482\ 517851207730351684240852483171368592354596760617184207344771\ 303768615441256104709615257106329207958857891370636668654226\ 668627598741990159293937377616627380523797310848321354613345\ 824936640519215403201542663630168337125631393644321198900751\ 309897458118224375862155562138132204372567203408924412447426\ 191762625165468828155675928128109122396184327504132254486363\ 462573142336434187126453194249586173168628353985230306916320\ 165307176186115255273138159294501491217530102244194102187144\ 270207207114774123518132546106144140201166182339319824304125\ 676185525801369789378639298750449400209313132470714271252396\ 201303215168177114238260253260193102638141177189196377117229\ 113172542190366267119229110112420351285173283143252142138105\ 125265215598270147245157170100165362100128133129158132132180\ 111172135104111124168102122154101132100107102106105101102101This means that removing 3 digits at a time from the left end gives a sequence of 380 primes.
Order 1
The largest right-truncatable prime is
73939133.
Removing a digit at a time from the right end gives a sequence of 8 primes.
There are 83 right-truncatable primes.
There are much fewer right- than left-truncatable primes because all digits
except the first must be 1, 3, 7 or 9 in a right-truncatable prime.
Longer sequences (probably arbitrarily long) become possible if it doesn't have
to end with a 1-digit prime.
Example: 15243423901999999999 can be truncated 9 times (removing a 9 each time)
to 15243423901.
Order 2
The only 110-digit right-truncatable prime of order 2 and starting with "11":
112997419307834977573171270727470309575119399999236391538737\ 53018739231353934953196323876313992301272907878337Removing 2 digits at a time from the right end gives a sequence of 55 primes. Only primes starting with "11" were searched.
Links
Mathworld: Truncatable
Prime
Usenet group sci.math: Truncating primes
The Prime Glossary: right-truncatable prime
Page created January 17 2006 by Jens Kruse Andersen. Last updated
July 17 2006.
home
If you know of improvements to the listed records then please mail me.